Biological Life Sciences

The following matrix indicates those courses deemed transferable among institutions listed across the top of the matrix. The numbers on the matrix represent the number of semester hours associated with the course at each institution and which institutions have agreed to transfer the commonly numbered course in each row.

You can view the group leaders at the bottom of the page. If you are interested in printing this page, please note that it is best to print in landscape mode.

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Number</th>
<th>Gerta</th>
<th>Course Title</th>
<th>BSC</th>
<th>LRSC</th>
<th>NDSCS</th>
<th>WSC</th>
<th>DCB</th>
<th>DSU</th>
<th>MASU</th>
<th>MISU</th>
<th>NDSU</th>
<th>UND</th>
<th>VCSU</th>
<th>SBC</th>
<th>TMCC</th>
<th>UTTC</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL</td>
<td>102</td>
<td></td>
<td>Introduction to Aquarium Keeping</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>BIOL</td>
<td>108</td>
<td></td>
<td>Beginning Birding</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>BIOL</td>
<td>109</td>
<td>ND:SCI</td>
<td>The Living World</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>BIOL</td>
<td>111/111L</td>
<td>ND:LABSC</td>
<td>Concepts of Biology/Lab</td>
<td>3/1</td>
<td>4</td>
<td>3/1</td>
<td>3/1</td>
<td>4</td>
<td>3/1</td>
<td>4</td>
<td>3/1</td>
<td>4</td>
<td>3/1</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL</td>
<td>115/115L</td>
<td>ND:LABSC</td>
<td>Concepts of Anatomy and Physiology</td>
<td>3/1</td>
<td>3/1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>BIOL</td>
<td>120</td>
<td>ND:LABSC</td>
<td>College Biology</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>BIOL</td>
<td>124/124L</td>
<td>ND:SCI/ND:LABSC</td>
<td>Environmental Science/Lab</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>3/1</td>
<td>4</td>
<td>3/1</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL</td>
<td>126/126L</td>
<td>ND:SCI/ND:LABSC</td>
<td>Human Biology</td>
<td>3/1</td>
<td></td>
</tr>
<tr>
<td>BIOL</td>
<td>142</td>
<td>ND:LABSC</td>
<td>General Microbiology</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>BIOL</td>
<td>150/150L</td>
<td>ND:LABSC</td>
<td>General Biology I/Lab</td>
<td>3/1</td>
<td>4</td>
<td>3/1</td>
<td>3/1</td>
<td>3/1</td>
<td>3/1</td>
<td>3/1</td>
<td>3/1</td>
<td>4</td>
<td>4</td>
<td>3/1</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>BIOL</td>
<td>151/151L</td>
<td>ND:LABSC</td>
<td>General Biology II/Lab</td>
<td>3/1</td>
<td>4</td>
<td>3/1</td>
<td>3/1</td>
<td>3/1</td>
<td>3/1</td>
<td>4</td>
<td>4</td>
<td>3/1</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>3/1</td>
</tr>
<tr>
<td>BIOL</td>
<td>154/54L</td>
<td>ND:LABSC</td>
<td>General Biology III: Intro to Botany</td>
<td>3/1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>BIOL</td>
<td>170/170L</td>
<td>ND:LABSC</td>
<td>General Zoology/Lab</td>
<td>3/1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>BIOL</td>
<td>202/202L</td>
<td>ND:LABSC</td>
<td>Microbiology/Lab</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>BIOL</td>
<td>211/211L</td>
<td></td>
<td>Human Anatomy/Lab</td>
<td>3/1</td>
<td></td>
</tr>
<tr>
<td>BIOL</td>
<td>212/212L</td>
<td></td>
<td>Human Physiology/Lab</td>
<td>3/1</td>
<td></td>
</tr>
<tr>
<td>Prefix</td>
<td>Number</td>
<td>Gerta</td>
<td>Course Title</td>
<td>BSC</td>
<td>LRSC</td>
<td>NDSCS</td>
<td>WSC</td>
<td>DCB</td>
<td>DSU</td>
<td>MASU</td>
<td>NDSU</td>
<td>UND</td>
<td>VCSU</td>
<td>SBC</td>
<td>TMCC</td>
<td>UTTC</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>-------</td>
<td>--------------</td>
<td>-----</td>
<td>------</td>
<td>-------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>------</td>
<td>------</td>
<td>-----</td>
<td>------</td>
<td>-----</td>
<td>------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>BIOL</td>
<td>213</td>
<td></td>
<td>General Pathology</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>BIOL</td>
<td>215/315</td>
<td></td>
<td>Genetics/Lab</td>
<td>3/1</td>
<td>3/1</td>
<td>4</td>
<td>3/1</td>
<td>4</td>
<td>3/1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3/1</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL</td>
<td>220/220L</td>
<td>ND:LABSC</td>
<td>Anatomy & Physiology I/Lab</td>
<td>3/1</td>
<td>4</td>
<td>3/1</td>
<td>3/1</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>3/1</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL</td>
<td>221/221L</td>
<td>ND:LABSC</td>
<td>Anatomy & Physiology II/Lab</td>
<td>3/1</td>
<td>4</td>
<td>3/1</td>
<td>3/1</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>3/1</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL</td>
<td>230</td>
<td>ND:SCI/ND:LABSC</td>
<td>Ecology</td>
<td></td>
<td>3/1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>BIOL</td>
<td>250/250L</td>
<td>ND:LABSC</td>
<td>Survey of Tropical Biology/Lab</td>
<td>3/1</td>
<td></td>
</tr>
<tr>
<td>BIOL</td>
<td>251/251L</td>
<td>ND:LABSC</td>
<td>Community Ecology/Lab</td>
<td>3/1</td>
<td></td>
</tr>
<tr>
<td>BIOL</td>
<td>260</td>
<td></td>
<td>Kinesiology L/L</td>
<td>3/1</td>
<td></td>
</tr>
<tr>
<td>MICR</td>
<td>202/202L</td>
<td>ND:LABSC</td>
<td>Microbiology/Lab</td>
<td>3/1</td>
<td>3/1</td>
<td>3/1</td>
<td>3/1</td>
<td>4</td>
<td>2/1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BOT</td>
<td>170/170L</td>
<td>ND:LABSC</td>
<td>Plant Form and Diversity</td>
<td>3/1</td>
<td></td>
</tr>
</tbody>
</table>

Note: Students are highly encouraged to complete BOTH Biol 150 and Biol 151 prior to transfer to avoid difficulty.

BIOL 102 Introduction to Aquarium Keeping
Introduction to Aquarium Keeping will explore the types of aquaria, aquarium equipment and maintenance, plants and animals for the aquarium, and how to troubleshoot problems aquarium keepers may face.

BIOL 108 Beginning Birding
This course is an introduction to the fascinating world of birds. Students will become familiar with the tools of birding such as binoculars, spotting scopes, field guides, and multimedia references. The course will also focus on characteristics of bird families and the identification of individual species before we go out in the field. The last portion of the class will concentrate on locating and identifying birds in their natural habitats. Optional field trips will be offered for student participation.

BIOL 109 The Living World
This is an introductory level biology course that as no lab. The class is not for biology majors. Includes: Basic concepts in Biology, Natural History, Sociobiology, Human Bio-Social Interaction.
BIOL 111/111L Concepts of Biology/Lab
Concepts of Biology is an introductory level non-majors transferable class. It is designed to meet the requirements of a Lab Science.

1. Basic science literacy, possibly including superficial coverage of cell biology, ecology, human anatomy and physiology, evolution, genetics, and environmental biology.
2. Understanding how science informs cultural perspectives.
3. Understanding the relationship among levels of biological information.
4. Understanding the unity and diversity of life forms.
5. Comprehending methods of inquiry and technology and the applications for society.
6. Integrating knowledge and ideas in science.
7. Understanding and utilizing scientific knowledge.

BIOL 115/115L Concepts of Anatomy and Physiology
One-semester course that integrates the structure and function of the human body. Course includes lab.

BIOL 120 College Biology
Introduction to cellular and molecular biology, genetics, evolution, and ecology.

BIOL 124/124L Environmental Science/Lab
Relation of humans to their environment.

1. Understanding basic principles of Natural Resource Management.
2. Understand the human cause of current environmental problems and possible solutions.
3. Population demography
4. Sustainable practices
5. Applying principles of ecology that are associated with the study of the environmental science.
6. Learn to apply critical thinking in environmental science.
7. Using the scientific method of inquiry to inform environmental science perspectives.

BIOL 126/126L Human Biology
Consideration of selected problems in human biology.
BIOL 142 General Microbiology
A survey of microbial cell biology, microbial genetics, microbial interaction with humans, and the impact of microorganisms on the environment.

BIOL 150/150L General Biology I/Lab
A two-semester sequenced study of the fundamental topics of biology, with an emphasis on cellular biology.

1. Understand cellular and viral structure and function.
2. Understand fundamental biochemical principles.
3. Understand rudimentary classical genetics.
4. Understand rudimentary molecular genetics and have a familiarity with various DNA technologies.
5. Use knowledge about mechanisms of cellular and molecular processes.

BIOL 151/151L General Biology II/Lab
A two-semester sequenced study of the fundamental topics of biology, with an emphasis on organismal biology.

1. Describe the unity and diversity of life, including structure and function and how this relates to the environment.
2. Describe how life (or life forms) has (have) changed and adapted over time.
3. Understand basic evolution and evolutionary processes.
4. Develop an understanding of ecology.

BIOL 154/54L General Biology III: Intro to Botany
Introduction to the biology of plants emphasizing evolution and diversity, plant anatomy and development, water and mineral nutrition, photosynthesis, and plant ecology.

BIOL 170/170L General Zoology/Lab
A survey of the animal kingdom, from simple to complex. Major invertebrate and vertebrate animal groups will be covered with emphasis on structure, function, life history characteristics and evolutionary advancements of each. Topics of animal ecology, with emphasis on regional species, concludes the course. Prerequisites exist.

BIOL 202/L-302/L Microbiology/Lab
A general survey on the morphology and physiology of selected microbes with major emphasis on the medical aspects of bacteria, viruses, and fungi to humans. Prerequisite: CHEM 131; Co-requisite: Microbiology Lab. This course and MICR
1. Gain an appreciation of the diversity of microbes; in the context of this course, "microbes" include diverse organisms, e.g., viruses, bacteria, fungi, protists, and small worms.
2. Describe the structure and function of microbes.
3. Understanding diagnostic tests and procedures used to identify microbes.
4. Understanding the relationship between microbes, disease and the disease process.
5. The role of microbes in microbial ecology.
6. Understand the roles of microbes in community health.

BIOL 211/211L Human Anatomy/Lab
Structure of the human body including histology and morphology of the skeletal, muscular, digestive, nervous, urinary, reproductive, circulatory, respiratory, and endocrine systems. Corequisite: BIOL 221 lab.

BIOL 212/212L Human Physiology/Lab
Covers the normal structure and function of the cell, tissues, organs and organ systems including the muscular, skeletal, cardiovascular, gastrointestinal, nervous, endocrine, excretory, and reproductive systems. Prerequisite: BIOL 211, CHEM 131 or equivalent.

BIOL 213 General Pathology
A general overview of the disease process and the mechanisms by which the human body copes with disease. Also a survey of the more common diseases affecting various body systems.

BIOL 215/315 Genetics/Lab
Study of the basis of heredity with emphasis on structure and function of DNA and Mendelian Genetics.

1. Understanding molecular genetics.
2. Understanding and solving problems in Mendelian (classical) inheritance.
3. Have a familiarity with genetic technologies.
4. Understanding population genetics and evolution.
5. Develop an appreciation for the relationship of genetics to other disciplines, e.g., biochemistry, ethics, economics, and medicine

BIOL 220/220L Anatomy & Physiology I/Lab
Study of structure and function of human body.

1. Students understand the organization of the body from simple to complex, from the chemical level to the system level and the inter-relationships between them.
2. Students gain an understanding of the role and importance of passive and active processes, membrane potentials, and feedback systems have in maintaining homeostasis.
3. Understand diagnostic treatments, procedures and technology used to identify and treat human disease and disorders.
4. Understand disease mechanisms in each system.
5. Understand the chemical basis of life and the anatomy and physiology of cells and tissues.
6. Understand body structure and function.
7. Understand the link between homeostatic imbalance and disease.
8. Organ systems that can be covered include musculoskeletal, respiratory, circulatory, nervous, integumentary, endocrine, lymphatic, digestive, reproductive, and urinary.

BIOL 221/221L Anatomy & Physiology II/Lab
Study of structure and function of human body.

1. Students gain a more thorough understanding of the inter-relationships and organizational hierarchy among the systems of the body.
2. Students will gain a more thorough understanding of role of feedback systems, osmosis/diffusion, electrolyte balance, acidosis/alkalosis in maintaining homeostasis.
3. Diagnostic procedures
4. Treatments of disease
5. Organ systems that can be covered include musculoskeletal, respiratory, circulatory, nervous, integumentary, endocrine, lymphatic, digestive, reproductive, and urinary.

BIOL 230 Ecology
A study of terrestrial and aquatic succession from communities through biomes. Basic concepts of the interrelationships of grassland, desert, arctic and marine environments.
BIOL 250/250L Survey of Tropical Biology/Lab
This course will survey the basic concepts of tropical biology and it will provide the student with a sound foundation in tropical ecosystems and biodiversity. This course will include formal lectures and laboratory field work in a tropical setting and when taken with BIOL 296L, it satisfies a four credit lab science requirement. The lecture topics will include tropical plant adaptations and defenses, tropical invertebrate and vertebrate diversity and conservation issues. Special emphasis will be given to comparing the differences between tropical areas and temperate zone. This course is intended for any student regardless of major or background and there are no prerequisites. Instructor's approval required for admission. Corequisite: BIOL 296L.

BIOL 251/251L Community Ecology/Lab
This course will introduce basic ecological concepts; describe the ecological structure, patterns, processes, and interactions of the major Everglades communities and their organisms; and discuss human influences on these and nearby communities. Prerequisite: Instructor's approval; BIOL 150 and 151 recommended. Corequisite: BIOL 251L The laboratory consists of fieldwork in the Everglades and surrounding ecosystems, including sawgrass prairies, tropical hardwood forests, mangrove swamps, and marine communities. Students will measure and analyze several biotic and abiotic factors and relate these to observed differences in community structure. Corequisite: BIOL 251

BIOL 260 Kinesiology L/L
In-depth study of the musculoskeletal system. Biomechanics of normal and abnormal posture, gait patterns, and body mechanics are presented. Basic evaluative techniques are learned. Prerequisite: BIOL 220 and 221.

MICR 202/202L Microbiology/Lab
A study of the characteristics and importance of microorganisms with emphasis on their identification, control and relationships to health and disease. This course and BIOL 302 are equivalent.

BOT 170/170L Plant Form and Diversity
Survey of plants and plant-like organisms, with emphasis on the structure and function of vascular plants. Prerequisites.

Fish and Wildlife

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Number</th>
<th>Gerta</th>
<th>Course Title</th>
<th>DCB</th>
</tr>
</thead>
<tbody>
<tr>
<td>FWLD</td>
<td>121</td>
<td>ND:LABSC</td>
<td>Introduction to Fish and Wildlife Management</td>
<td>3</td>
</tr>
<tr>
<td>FWLD</td>
<td>122</td>
<td>ND:LABSC</td>
<td>Wildlife and Fisheries Techniques</td>
<td>3</td>
</tr>
</tbody>
</table>
FWLD 121 Introduction to Fish and Wildlife Management
Field and laboratory methods used in game management. Census methods, history of management in legislation, law enforcement, and careers in wildlife management.

FWLD 122 Wildlife and Fisheries Techniques
Provide a basic understanding of the biological principles involved in wildlife management. Upland game, waterfowl, big game, fisheries and non-game.

FWLD 243 Ornithology
An introduction to the biology, classification and identification of birds. Students will be required to use binoculars in this class and must provide this equipment on their own.

FWLD 258 Field Studies-Wildlife
An intensive examination of a research topic in wildlife. The subject of investigation is designed to meet the specific needs of individual students on an independent study basis.

The following individuals are leaders for this discipline. Those marked with an asterisk (*) are chairs.

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
<th>Email Address</th>
<th>Phone Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eric Bless</td>
<td>BSC</td>
<td>eric.bless@bismarckstate.edu</td>
<td>701-224-5411</td>
</tr>
<tr>
<td>DeShawn Lawrence</td>
<td>CCCC</td>
<td>Deshawn.lawrence@littlehoop.edu</td>
<td>701-766-1342</td>
</tr>
<tr>
<td>Larry Brooks</td>
<td>DCB</td>
<td>larry.brooks@dakotacollege.edu</td>
<td>701-228-5457</td>
</tr>
<tr>
<td>Shubham Datta</td>
<td>DCB</td>
<td>shubham.datta@dakotacollege.edu</td>
<td>701-228-5463</td>
</tr>
<tr>
<td>Chuck Lura</td>
<td>DCB</td>
<td>chuck.lura@dakotacollege.edu</td>
<td>701-228-5472</td>
</tr>
<tr>
<td>Craig Whippo</td>
<td>DSU</td>
<td>Craig.whippo@dickinsonstate.edu</td>
<td>701-483-2115</td>
</tr>
</tbody>
</table>
Shaun Prince LRSC shaun.prince@lrsc.edu 701-662-7650
Joseph Mehus MaSU joseph.mehus@mayvillestate.edu 701-788-4802
Alexandra Deufel MiSU alexandra.deufel@minotstateu.edu 701-858-3115
Shannon King NDSCS shannon.king@ndscs.edu 701-671-2296
Marie Gordon NDSU marie.gordon@ndsu.edu 701-231-6430
Lisa Montplaisir NDSU lisa.montplaisir@ndsu.edu 701-231-6155
Wendy Reed NDSU wendy.reed@ndsu.edu 701-231-5921
Lisa Johnson NDUS lisa.a.johnson@ndus.edu 701-328-4143
Jen Janecek-Hartman NHSC jjanec@nhsc.edu 701-627-8049
Melody Azure SBC melody.azure@sittingbull.edu 701-854-8020
Terri Martin-Parisien TMCC tmartinparisien@tm.edu 701-477-7862 ext. 2961
Jeff Carmichael UND jeffrey.carmichael@und.edu 701-777-4666
Charles Gitter UTTC cgitter@uttc.edu 701-255-3285 x3101
Andre DeLorme VCSU andre.delorme@vcsu.edu 701-845-7573
Susan Zimmerman WSC s.zimmerman@willistonstate.edu 701-774-4232

Click here to email everyone on the above list.

Director of Academic Affairs